Search results for "Hermite operator"
showing 3 items of 3 documents
A sharp lower bound for some neumann eigenvalues of the hermite operator
2013
This paper deals with the Neumann eigenvalue problem for the Hermite operator defined in a convex, possibly unbounded, planar domain $\Omega$, having one axis of symmetry passing through the origin. We prove a sharp lower bound for the first eigenvalue $\mu_1^{odd}(\Omega)$ with an associated eigenfunction odd with respect to the axis of symmetry. Such an estimate involves the first eigenvalue of the corresponding one-dimensional problem. As an immediate consequence, in the class of domains for which $\mu_1(\Omega)=\mu_1^{odd}(\Omega)$, we get an explicit lower bound for the difference between $\mu(\Omega)$ and the first Neumann eigenvalue of any strip.
The equality case in a Poincaré–Wirtinger type inequality
2016
It is known that, for any convex planar set W, the first non-trivial Neumann eigenvalue μ1 (Ω) of the Hermite operator is greater than or equal to 1. Under the additional assumption that Ω is contained in a strip, we show that β1 (Ω) = 1 if and only if Ω is any strip. The study of the equality case requires, among other things, an asymptotic analysis of the eigenvalues of the Hermite operator in thin domains.
An optimal Poincaré-Wirtinger inequality in Gauss space
2013
International audience; Let $\Omega$ be a smooth, convex, unbounded domain of $\mathbb{R}^N$. Denote by $\mu_1(\Omega)$ the first nontrivial Neumann eigenvalue of the Hermite operator in $\Omega$; we prove that $\mu_1(\Omega) \ge 1$. The result is sharp since equality sign is achieved when $\Omega$ is a $N$-dimensional strip. Our estimate can be equivalently viewed as an optimal Poincaré-Wirtinger inequality for functions belonging to the weighted Sobolev space $H^1(\Omega,d\gamma_N)$, where $\gamma_N$ is the $N$% -dimensional Gaussian measure.